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Remarks on the ‘Bayesian’ method of
moments
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Minneapolis, USA and *Carnegie Mellon Urniversity, Pittsburgh, PA, USA

SUMMARY  Zellner has proposed a novel methodology for estimating structural parameters
and predicting future observables based on two moments of a subjective distribution and
the application of the maximum entropy principle—all in the absence of an explicit
statistical model or likelihood function for the data. He calls his procedure the ‘Bayesian
method of moments’ (BMOM). In a recent paper in this journal, Green and Strawderman
applied the BMOM to a model for slash pine plantations. It is our view that there are
inconsistencies between BMOM and Bayesian (conditional) probabiliry, as we explain in
this paper.

1 Introduction

Zellner (1996) proposes a novel methodology for estimating structural parameters
and predicting future observables based on two moments of a subjective distribution
and the application of the maximum entropy principle—all in the absence of an

- explicit statistical model or likelihood function for the data. He calls his procedure
the ‘Bayesian method of moments’ (BMOM). It is our view that there are
inconsistencies between his approach and Bayesian (conditional) probability, and
that the procedure is misnamed as being ‘Bayesian’. A more appropriate designation
might be the ‘maximum entropy method of moments’ (MEMOM). We give the
reasons for our view for only the simplest case he considers. Other cases suffer
from the same predicament, however.

2 BMOM
For the simplest BMOM case, we start with the structural model
v, =0+ u, i=1,...,n (D
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where only the y; terms are observed. Let y™ denote these observations. Both 6
and u; are unknown, and no statistical model, i.e. no likelihood function, is specified
for them apart from what equation (1) entails is impossible.

Green and Strawderman (1996) adapt Zellner’s BMOM inference and this
simple regression model to an agricultural ‘growth and yield’ problem. Correctly,
we think, they emphasize the importance of giving Bayesian (full) distributions for
parameters and future observable quantities of interest, instead of providing merely
point estimates for these terms, as has been done in the literature that they cite.
However, the inconsistencies of Zellner’s BMOM approach with Bayesian inference
that we point out for equation (1) (see later) are also present in their reasoning.

We identify two steps in Zellner’s derivation of BMOM probabilities. The first
step involves Assumptions I and II, which fix two moments of the ‘posterior’
distribution of the error term @ as a function of the observed sample y* and a new
parameter ¢°. This first step induces ‘posterior’ first moments on each of the two
parameters (6, 0°) and a conditional second moment on 6, given ¢2. Let

yn = n_lzyi
iZ1
and
E=m—D"'Y (-5
i=1

From Assumption I, we have that E[0{y™] =y, and, from Assumption II, we have
that E[o”|y™] = 5% and then that Var[0|¢?,y™] = ¢*/n. Zellner also applies these two
moment assumptions to the predictive probability p(y,.:|v™), so that

E[yn+1 [szy(n)] :.)771
and

a*(n+1
Varly, 0%y = LD

The second step for arriving at the BMOM probability is to use the MAXENT
principle, in order to fix exact distributions with these moments as constraints.

Thus, Zellner obtains .
[ n L
P(9|02>y<")) = ~—27'CO'_2 6—50—2(0_3'")2 . (2)

1 2
p(o*zly("))zs—ze 2 3)

n

and

LI
p<yn+lly(n)>:\/——-l-e s [yn+1 -3, (4)

2s),
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§i= <__n + 1>si.
n

As a first Warning that this inference is suspicious, we note that the BMOM
dlstrlbutlon of ¢ does not converge to ¢° as n increases. In other words, let z, = ¢?/

. Then, the BMOM density satlsﬁes p(2,]y") =e * for all n. To put this in
perspectlve, note that E[¢?|y™] = s2. However, this BMOM distribution of ¢* has
its median at (In2)s’~0.7s2, which is bounded away from its mean s2, and its
quartiles are approximately 0.3s2 and 1.4s2. We think that this is a relatively minor
anomaly, which we set aside here in order to discuss two non-Bayesian aspects of
BMOM inferences.

where

3 Non-Bayesian nature of BMOM: Global model

Of course, the BMOM joint posterior density for the two parameters is just the
product

20, 6°|y®) = p(0]0*, y*)p(a®|y™) (5)
Next, consider the Bayesian condition
PGl = [12War116, 6%, 5)p(0, 2 |3™) d0 do? (6)

Equations (4) and (5) identify two of the three terms in equation (6) with only the
likelihood p(y,1:]6, 0%,5™) not yet explicitly given. However, the integral equation
(6) has a unique solution:

1
J2n?

First, let us consider the existence of a global Bayesian model for BMOM inference,
by working backwards from the joint BMOM posterior of equation (5). In other
Words, according to Bayes, there must exist some likelihood L(y™|0, ¢%) and prior
p(0, 6*) where

1
PWns1]0, 02,97 = e 3z 0o (7

(0, 6°|y™) oc L(y™16, 6*)p(0, 0% (8)

although these may not be unique. Assume that we are willing to make the
predictive assumptions I and II for all . Then, because the solution in equation
(7) is unique for all »> 1, we extract a joint likelihood which is, in fact, the
independent and identically distributed (i.i.d.) N(0, ¢%) statistical model for y;:

Ly™18,0% = [ | L o502, ©)

i=1./270%

However, if we use the BMOM posterior of equation (5) and induced likelihood
of equation (9) to identify the prior p(6, ¢*) in equation (8), then we discover that,
unfortunately, the ratio

0, a*|y™)
0, 2 p( b 10
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depends on the sample statistics 7, and s%; therefore, it changes for each n, which
means that it is not a prior in the Bayesian sense. Hence, either there is no global
Bayesian model for BMOM inference, or the predictive assumptions I and II are
allowed only for certain samples. Notably, which values of # may these be?

4 Non-Bayesian nature: Local model

The Bayesian approach yields coherent solutions for updating according to, the
laws of conditional probability. Thus, to have even a local Bayes model, the BMOM
must satisfy

PGus11¥, 0, 6D (0, 6%|y™)
(0, d*|y" Py = (11)
p(yn +1 Iy(n))

On the right-hand side of equation (1 1), the two terms in the numerator are as in
equations (7) and (5) respectively, and the denominator is from equation (3). In
solving the right-hand side of equation (11), we do not obtain the BMOM posterior
that corresponds to equation (5) evaluated at 3@*D_ In other words, the right-hand
side of equation (11) does not yield

n+1l _a+1, 1
) e 3z U 2 € sy, (12) .
n+1

which is the BMOM solution to p(, ¢%[y"*") under the VEry same assumptions
that lead to the three terms that constitute the right-hand side of equation (11).
Instead, the right-hand side of equation (11) yields

<1 ST =3t — 0 n—l—1>2
Y 7% T V41l —
V2 "
n+1 2tliy 5 5 1
4 20 X 14 n+l ,, . (13)
2no? os, \/; o’

Evidently, the conflict between the BMOM rule and Bayesian updating relates to
the (marginal) posterior for the parameter ¢2. In short, either there is no local
Bayes model of BMOM inference, or the predictive assumptions I and Il cannot
be made for even a future sample of size 1.

5 Concluding remarks

The reader may better understand the non-Bayesian aspects of BMOM probability
by remembering the two steps that Zellner takes in deriving it. The first step is
taken with Assumptions I and II, which fix moments of the posterior (0, d?)
parameter distribution, and of the predictive distribution for Yat15 all as a function
of the observed sample y®. Specifically, from Assumption I, we have that
E[0]y"] =3, and, from Assumption II, we have that E[6?*|y™] = s? and then that
Var[0]o?, y*] = 6°/n. Applied to the predictive probability p(v,,,|y™], the two
assumptions yield E[y,,,|0%,9"] =7, and Var[y,,,|d?,y"] = 0*(n+ 1)/n. Recall,
also, that the second step in arriving at the BMOM probability is to use the
MAXENT principle to fix exact distributions with these moments as constraints.
The first step, by itself, is not in conflict with Bayesian theory, as the following
analysis shows. Specifically, for coherence of conditional expectations (in fact, as a
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consequence of the law of total probability), we require that, for each random
variable X, we have (assuming that E[X|y%] exists)

E[E[X|y"*"]1y"] = E[X]y™] (14)
Now, from Assumption I applied to the posterior at the two sample sizes, i.e.
E[By®1 =53,  E[0ly"""] =5 - (15)
we obtain |
E[y,1ly"] =3, (16)

just as is needed for consistency with the first predictive moment about y, ;.
The consequences of the two versions of Assumptions II are straightforward too.
Assume that

E[o®’|y"] =s;,  E[c*[y"* V] =+, (17)
Now, expanding s, write

n—1 1 _
Sop1 =52 +m[yn+l—yn]2 (18)

Then, because E[s2,,|y™] must equal s2 by the ‘law’, we have the simple result

n
s

= B[O — 55 19
n + 1 [(yn+1 yn) b’ ] ( )
From before, we have that E[y,.,|y™] =7,. Thus, we obtain

n

2= " Var[y,.,]y” 20
R ar [ Yoy (20)
However, we have by BMOM
Var [y, =21 1)
n

just as is needed for coherence.

Thus, Zellner’s use of sample moments to fix the BMOM moments for the
parameters is coherent. However, in light of the results about global and local non-
Bayesian aspects of the BMOM probability, we conclude that, here, it is the
applications of the MAXENT principle which are the source of conflict between
the BMOM and Bayes rule for updating. '
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